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Method for Predicting Creep in Tension and

Compression from Bending Tests
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It is shown that tensile and compressive creep be-
havior may be deduced from deflection measure-
ments in creep bending tests on beams of
trapezoidal cross section. In the analysis it is
assumed that creep strains are proportional to
stress and are large relative to elastic strains.

N APPLYING compressive creep data to predict creep in
tension or in analyzing bending creep data, it is usually
assumed that tensile and compressive creep are identical,
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Unfortunately, it is hardly possible to evaluate this assump-
tion for ceramics because of the lack of experimental evi-
dence, but for metals and organic polymers a number of
studies have shown pronounced differences between tensile
and compressive creep.
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Table I. Summary of Creep Tests on Polycrystalline Ceramics
Type Test Approx. grain Exponent
. of temp. diameter 7 in
Material and reference test® £2C) Range of stress (psi) () e~ g"
Aluminum oxide (Ref. 1) B3 1400-1800 100-15,000 at 1800°C 7-34 1
Aluminum oxide (Ref. 2) B4 1600-1800 1002000 3-13 1
50-100 4
Magnesium oxide (Ref. 3) B4 1180-1250 20002800 at 1250°C 1-3 1
1600-2600 at 1180°C
Beryllium oxide (Ref. 4) c 1370-1540 1500-6000 7.5-10 1
Beryllium oxide (Ref. 5) € 1200 1000-6000 1
6000-10,000 3-89 >1¥:

* B3 = three-point bending, B4 = four-point bending, and C = compression.
T Generally, tests at higher stresses appear to have been made on specimens of larger grain size.

If the outer fiber strains are measured in creep bending tests,
it is possible with certain assumptions to obtain tensile and
compressive creep data, and, conversely, if tension and com-
pression creep data are available, it is possible to pre-
dict creep in bending. At the very high temperatures that are
of interest in the creep testing of ceramics, however, both
tension testing and the measurement of surface strain in a
bending test present great difficulty. With these limitations
in mind, the purpose of this paper is to outline a method by
which tensile and compressive creep data may be obtained
from bending deflection measurements on beams of trape-
zoidal cross section.

The creep strains produced by constant stress tension and
compression will be taken as ¢, = oF, ¢, = BoF, where ¢ is
stress, B is the ratio of compressive to tensile creep at a
given stress, and F is an arbitrary function of time. That
the assumption of linear stress dependence is reasonable for
fine-grained polycrystalline ceramics can be seen from Table
I which summarizes a number of recently reported creep
tests. By contrast, creep tests on single crystals of aluminum
oxide at 1000°C showed creep proportional to the sixth
power of stress® and tests on magnesium oxide at 1450° to
1700°C showed creep proportional to the fourth power of
stress.” Similarly, in metals the dependence of creep strain
on stress is normally nonlinear, whereas organic polymers
usually show a linear stress dependence unless the strains
become large. The assumption that tensile and compressive
creep strain show the same time dependence is probably
reasonable but, in any event, it may be checked from the
test results, In addition, to simplify the analysis, it will be
assumed that elastic strains are negligible compared to creep
strains. Although this assumption limits the generality of
the analysis, it permits a closed form analytical solution
which should be adequate in many cases.

Since plane cross sections before bending remain plane
during pure bending, the strain ¢, at distance y from the
neutral axis may be written as ¢, = eg.(y/H,;) where eg, is
the strain at the outer fiber, distance H, from the neutral
axis. Other details of nomenclature are shown in Fig. 1.
The preceding equation may be rewritten in terms of stress
as: o, = og,(y/H,) for compression and o, = Bou.(yv/H,)
for tension. The condition of axial force equilibrium for the
section shown in Fig. 1(a) is

He
f o, bdy =0

Putting k. = H,/H, h, = H,/H, and making use of &, + ,
= 1 leads, after manipulation, to

e B)(Z-f—l)hc3+(1—ﬁ)hé’+ﬂ(%+l)hc—
gz(’blf+1) -0 (1)

This equation is shown graphically in Fig. 2 and makes it
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Fig. 1. Nomenclature used to describe beams of trapezoidal
cross section.
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Fig. 2. Distance . as function of b,/b, for several values of 8.

possible to locate the neutral axis for various values of g and
bs/b;. By symmetry, the same graph applies also to the in-
verted section shown in Fig. 1(b) if % is replaced by A’;, =
H',/H and B is replaced by 1/8.

The condition of moment equilibrium for the section shown
in Fig. 1(a) is

T
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Fig. 3. Deflection ratio as funfction of by/b, for several values
of 8.

He
M= f ayyb dy
_H‘

After substitution for ¢ and b and integration this becomes
3 MH,

bH? on,

—me+g(E-1)me+

8 [h,’ + (Z—f - 1) ek + 3 I”f o 1) h,‘] @)

Similarly for this section shown in Fig. 1(b),

3 MH'. _ / 1 (b _ ) )
B o'n, “’["”+4(bx 1)"“]+"‘a+

(Z-1) v+ (21w @

With the preceding equations, the bending stresses may be
determined for a given cross section and bending moment if
the parameter 8 is known. As g has to be determined, how-
ever, the equations must be used in somewhat different form.

In pure bending, the radius of curvature R of the neutral
axis at a given time is related to the surface strain
by 1/R = en/H, = BouF/H, and similarly 1/R’ =
Bon'.F/H';. Hence the ratio of the two curvatures at a given
time 1/R =+ 1/R’ is merely the right-hand side of Eq. (3)
divided by the right-hand side of Eq. (2). The curvature is
given by 1/R = d?y/dx*/[1 + (dy/dx)*]*/?, where y is bending
deflection and x is distance along the beam. In most practical
cases the slope dy/dx is small enough for this to be written as
1/R = d*y/dx* and bending deflections will then be directly
proportional to 1/R. Thus, if the beams with cross sections
shown in Fig. 1 are subjected to the same bending moments
the ratio of deflections 6/6’ at corresponding locations along
the beam at a given time are given by
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Fig. 4. Quantity used to obtain creep constants as a function
of b,/b, for several values of g.

_ 1/R _ Right-hand side Eq. (3)
~ 1/R’ ~ Right-hand side Eq. (2)

5/8'

This relation is shown in Fig. 3 for a range of values of 8 and
bs/by;. By observing the ratio at several times, for which creep
strains are large relative to elastic strains, the ratio 8 may be
found. If B varies greatly with time the preceding analysis is
not applicable, whereas if 8 = 1, tension and compression
creep are equivalent and the analysis of bending tests presents
no difficulty. If 8 # 1, the next step is to determine the in-
dividual tension or compression creep data. This may be
done by using Eq. (2) to find o, for a given bending moment.
Measurements of curvature as a function of time (obtained
from bending deflection data) then make it possible to deter-
mine F from F = (1/R) (H/on,) (1/8). For this purpose Fig.
4 shows (3M/b,H?) (H,/on,) for various values of 8 and b,/b,.
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