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Method for Predicting Creep in Tension and 
Compression from Bending Tests 

lAIN FINNIE 

Lawrence Radiation Laboratory, University of California, Livermore, California 94551 

It is shown that tensile and compressive creep be
havior may be deduced from deflection measure
ments in creep bending tests on beams of 
trapezoidal cross section. In the analysis it is 
assumed that creep strains are proportional to 

stress and are large relative to elastic strains. 

I N APPLYING compressive creep data to predict creep in 
tension or in analyzing bending creep data, it is usually 

assumed that tensile and compressive creep are identical. 
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Unfortunately, it is hardly possible to evaluate this assump
tion for ceramics because of the lack of experimental evi
dence, but for metals and organic polymers a number of 
studies have shown pronounced differences between tensile 
and compressive creep. 
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Table I. Summary of Creep Tests 00 Polycrystallioe Ceramics 
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Type Test Approx. grain Exponent 
of temp. diameter n in 

Material and reference test· C°C) Range of stress (psi) (P) f ......... 0''' 

Aluminum oxide (Ref. 1) B3 1400-1800 100-15,000 at 1800°C 7-34 1 
Aluminum oxide (Ref. 2) B4 1600-1800 100-2000 3-13 1 

50-100 4 
Magnesium oxide (Ref. 3) B4 1180-1250 2000-2800 at 1250°C 1-3 1 

1600-2600 at 1180°C 
Beryllium oxide (Ref. 4) C 1370-1540 1500-6000 7.5-10 1 
Beryllium oxide (Ref. 5) C 1200 1000-6000 1 

6000-10,000 3-89 >1 t 
* B3 = three-point bending, B4 = four-point bending, and C = compression. 
t Generally, tests at higher stresses appear to have been made on specimens of larger grain size. 

If the outer fiber strains are measured in creep bending tests, 
it is possible with certain assumptions to obtain tensile and 
compressive creep data, and, conversely, if tension and com
pression creep data are available, it is possible to pre
dict creep in bending. At the very high temperatures that are 
of interest in the creep testing of ceramics, however, both 
tension testing and the measurement of surface strain in a 
bending test present great difficulty. With these limitations 
in mind, the purpose of this paper is to outline a method by 
which tensile and compressive creep data may be obtained 
from bending deflection measurements on beams of trape
zoidal cross section. 

The creep strains produced by constant stress tension and 
compression will be taken as Et = uF, Ee = {JuF, where IT is 
stress, (J is the ratio of compressive to tensile creep at a 
given stress, and F is an arbitrary function of time. That 
the assumption of linear stress dependence is reasonable for 
fine-grained polycrystalline ceramics can be seen from Table 
I which summarizes a number of recently reported creep 
tests. By contrast, creep tests on single crystals of aluminum 
oxide at lOOOoC showed creep proportional to the sixth 
power of stress6 and tests on magnesium oxide at 1450° to 
1700°C showed creep proportional to the fourth power of 
stress.7 Similarly, in metals the dependence of creep strain 
on stress is normally nonlinear, whereas organic polymers 
usually show a linear stress dependence unless the strains 
become large. The assumption that tensile and compressive 
creep strain show the same time dependence is probably 
reasonable but, in any event, it may be checked from the 
test results. In addition, to simplify the analysis, it will be 
assumed that elastic strains are negligible compared to creep 
strains. Although this assumption limits the generality of 
the analysis, it permits a closed form analytical solution 
which should be adequate in many cases. 

Since plane cross sections before bending remain plane 
during pure bending, the strain Ell at distance y from the 
neutral axis may be written as Ell = ESe(y/He) where ERe is 
the strain at the outer fiber, distance He from the neutral 
axis. Other details of nomenclature are shown in Fig. 1. 
The preceding equation may be rewritten in terms of stress 
as: UII = uRe(y/ He) for compression and UII = (JITRe(y/ H.) 
for tension. The condition of axial force equilibrium for the 
section shown in Fig. 1 (a) is 

f
H. 

lTv b dy = 0 
-Ht 

Putting he = He/ H, he = He/ H, and making use of he + h t 

= 1 leads, after manipUlation, to 

~ (1 - (j) (~ - 1) he3 + (1 - (3)h.2 + {j (~ + 1 )hc -

~ 2(~ + 1) = 0 (1) 
3 bl 

This equation is shown graphically in Fig. 2 and makes it 
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cross section. 
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Fig. 2. Distance he as function of b,.lb, for several values of (j. 

possible to locate the neutral axis for various values of fJ and 
b2/b,. By symmetry, the same graph applies also to the in
verted section shown in Fig. 1(b) if he is replaced by h', = 
H',/ H and {J is replaced by 1/ {J. 

The condition of moment equilibrium for the section shown 
in Fig. 1 (a) is 
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Fig. 3. Dellection ratio as function of b2/bl for .several values 
of 13. 

f
He 

M = u.yb dy 
-Ht 

Mter substitution for u and b and integration this becomes 

~ MH. = h.8 + ! (~ - 1) he' + 
blH' UH. 4 bl 

13 [h t
3 + (~ - 1) heht

3 + ~ (~ - 1) ht'] (2) 

Similarly for this section shown in Fig. l(b), 

bl~3 ~~:e = 13 [h'tS + i (~ - 1) h't'] + h'es + 

(~ - 1) h'e
3h't + ~ (~ - 1 )h'.' (3) 

With the preceding equations, the bending stresses may be 
determined for a given cross section and bending moment if 
the parameter {J is known. As {J has to be determined, how
ever, the equations must be used in somewhat different form. 

In pure bending, the radius of curvature R of the neutral 
axis at a given time is related to the surface strain 
by l/R = EHe/H. = {JuHeF/H. and similarly l/R' = 
fJull'.F/ H'e. Hence the ratio of the two curvatures at a given 
time 1/ R + 1/ R' is merely the right-hand side of Eq. (3) 
divided by the right-hand side of Eq. (2). The curvature is 
given by l / R = d 2y/ dx2/ [1 + (dy/ dx)2]'/', where y is bending 
deflection and x is distance along the beam. In most practical 
cases the slope dy/ dx is small enough for this to be written as 
1/ R = d2y / dx2 and bending deflections will then be directly 
proportional to 1/ R. Thus, if the beams with cross sections 
shown in Fig. 1 are subjected to the same bending moments 
the ratio of deflections 0/ 0' at corresponding locations along 
the beam at a given time are given by 
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Fig. 4. 
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Quantity used to obtain creep constants as a function 
of b2/bl for several values of 13. 

0/0' = 1/R = Right-hand side Eq. (3) 
1/R' Right-hand side Eq. (2) 

This relation is shown in Fig. 3 for a range of values of {J and 
bdb1• By observing the ratio at several times, for which creep 
strains are large relative to elastic strains, the ratio {J may be 
found. If fJ varies greatly with time the preceding analysis is 
not applicable, whereas if {J = 1, tension and compression 
creep are equivalent and the analysis of bending tests presents 
no difficulty. If fJ ~ 1, the next step is to determine the in
dividual tension or compression creep data. This may be 
done by using Eq, (2) to find ITH. for a given bending moment. 
Measurements of curvature as a function of time (obtained 
from bending deflection data) then make it possible to deter
mine F from F = (1/ R) (He/ IT He) (1/ (3). For this purpose Fig. 
4 shows (3M/ b1H3) (He/ ITHe) for various values of fJ and b2/ b!. 
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